In order to study the role of plasmids on APEC interaction with enteric cells, the group used a 3-D cell culture model of human intestinal epithelium, which has been shown to more accurately mimic the structure-function of the in vivo tissue than traditional monolayer cultures. Cheryl Nickerson’s research group at the Biodesign Institute – participants in the current study – have worked extensively in the development and application of 3-D cell cultures as human surrogate infection models. The application of these advanced enteric models to dissect the molecular mechanisms of APEC pathogenesis was a logical choice for these studies. 

The large plasmids under investigation did not appear to have a significant effect on the ability of APEC-derived strains to associate with and invade human intestinal epithelial cells. Further experiments however implicated large plasmids – for the first time – in APEC’s ability to resist acid and bile, two critically important tools for E. coli survival, particularly under the low pH conditions found in certain foods and in the stomach. 

Many pathogenic bacteria, APEC included, form aggregates of material known as biofilms. Biofilms are implicated in 65-80 percent of human infections. Their mechanisms of formation are therefore a matter of considerable medical concern. ExPEC cells form biofilm concentrations in both the gastrointestinal and urinary tracts. By examining the function of three large plasmids in biofilm formation (separately and in combination) at varying temperatures, the group was able to tease out some of the key features of ExPEC biofilm formation. They found that 4 distinct kinds of biofilm formed under the influence of the large plasmids, depending on temperature conditions. 

Plasmid-driven biofilm formation may play an essential role in the virulence of APEC and other ExPEC forms, by conveying survival advantages in various environmental niches found in the host. Likewise, the means by which ExPEC bacteria are able to modify their metabolism to make use of available nutrients is an important factor in their pathogenesis. A gene cluster located on one of the large plasmids was found to code for an alternate sugar pathway, again improving the pathogen’s prospects for survival under changing nutrient conditions. (Intriguingly, the gene cluster does not occur in other forms of E. coli, though it is present in another important pathogen – Salmonella.)

The combined results are a significant advance toward a comprehensive understanding of extra-intestinal E. coli pathogens and their mechanisms of survival. In earlier work, assistant research professor Mellata generated vaccine candidates specifically targeting APEC infection. The current research improves the prospects for a new range of vaccine candidates conveying cross protection from ExPEC infections in both human and avian populations. “We are very confident that our strategy in designing a much broader vaccine targeting multiple subgroups of pathogenic E. coli will result in positive health and economic impacts,” Melha says.