Sea level rise and more frequent violent storms resulting from climate change threaten to take a tremendous toll on all types of infrastructure – especially along the coasts, said study co-author Martin Fischer, professor of civil and environmental engineering and director of the Center for Integrated Facility Engineering at Stanford.

Fischer, Becker and a group of Stanford engineers are developing computer models to help port authorities and other government agencies make more informed decisions about adapting to climate change as they plan for the next generation of infrastructure. The group meets weekly at a seminar that focuses on engineering and policy for a sustainable future.

"Look around at any seaport today and you will see structures that were built 100 years ago," said Fischer. "And the buildings that we are building today will be around when sea level rise begins to reshape the coast."

The problem on a global scale, he said, is that ports may start scrambling all at once to adapt their structures to changing environmental conditions. "It could potentially exceed our capacity for construction worldwide," he added.

Fischer and his colleagues have developed a model that demonstrates how a rapid, simultaneous push to fortify the world's seaports could drive up demand for construction materials and equipment. The model, called Sebastian, uses a Google Earth platform to simulate the costs and time required for building dikes around 200 of the world's most active seaports. Sebastian knows the shape of the ocean floor at each location and tailors the structure to each site to produce an estimate of the materials, labor and equipment that would be needed to fortify the port against sea level rise.

"Sebastian allows us to run different scenarios based on different levels of sea rise, and see how the ports are affected," said Fischer. Using criteria in the Army Corps of Engineers manual, the model calculates the resources needed for each variation of the structure. It's a way to calculate big-picture, worldwide demand, Fischer said, but it also gives managers more reliable information about how much survivability they are buying when they invest in different types of protective structures.