Add to that the "Black Friday" effect: fierce competition for limited supplies while they last.

"Imagine: As soon as the sun sets, all the hawkmoths fly around flower patches in the desert," von Arx said. "These flowers open within minutes of each other, and as soon as they do, the moths go there. A big flower patch or a plant with multiple flowers might attract many moths at the same time, so it's very important for an individual to pick the most profitable one very quickly."

The research group first measured humidity levels around a nectar-bearing flower by enclosing primrose plants in a sealed container and scanning the air inside with highly sensitive humidity measuring devices called hygrometers. They found that humidity just above the opening flower was slightly higher than ambient levels, caused partly by a plume of water vapor emanating from the flower's nectar tube.

To study whether and how moths respond to the humidity evaporating from nectar stores, the research team put artificial flowers – to exclude any other potential signal other than humidity levels – in a flight cage large enough for the moths to fly about freely.

Even though none of the artificial flowers had nectar, the moths would preferentially hover and extend their proboscis into those that had slightly elevated humidity compared with those that matched the humidity around them. The animals were able to sense if humidity near a flower was elevated as little as 4 percent above ambient humidity in the flight cage, despite of the turbulence generated by many moths hovering about.

"It was really exciting to see their high sensitivity to humidity in that they can perceive such a minute amount of difference in such a dynamic environment," von Arx said.

The results help researchers better understand the ecological relationships between flowers and their pollinators, especially in arid environments such as the Southwestern U.S.

Even though most plant-pollinator relationships are mutually beneficial – the plant rewarding the pollinator's help with food – their interests are conflicting.

"Speaking in evolutionary terms, the flower wants to be visited by a pollinator, but it doesn't want to invest too much because sacrificing resources and energy to make nectar is expensive," von Arx explained. "Often, plants are dishonest in their advertising, by presenting attractive flowers with no nectar."

But under certain circumstances, especially in desert environments, where water is scarce, it is beneficial for a flower to be honest, the researchers believe.

"If you're one of only a few flowers and there are lots of pollinators out there, you don't have to be honest about how much nectar you have because they'll visit anyway," von Arx said. "But if you want the attention of just a few, you really have to go all out. So by saying, ‘Hey, come here, I have lots of nectar,' you're giving a faithful signal about an actual benefit that the pollinators can perceive and evaluate."

"I think in this case we showed that honesty makes sense in this system, because plants pollinated by hawkmoths are often pollinator-limited, and this signal, especially in the desert environment, is very potent."

According to von Arx, relative humidity plays an important role in the insect world and has been associated with choosing a suitable habitat but never was studied in the context of foraging for nectar. For example, neurobiological experiments revealed that cockroaches are able to detect humidity changes of a fraction of a percent.

"As creatures who use vision and olfaction, humans think in odors and shape, and color," von Arx said. "We are biased by what we can perceive. We know that moths have hygroreceptors on the tips of their antennae, but they remain a mystery for the most part. We know a lot about olfactory receptors, mechanoreceptors and vision. The insect eye has been studied in and out. But hygroreception? We still don't really know how that actually works."

Funding for this research project came from the National Science Foundation, the Swiss National Science Foundation and the Johnson & Johnson Corporation.