The researchers found thousands of distinct differences in gene activity in the brains of scouting and non-scouting bees.

“We expected to find some, but the magnitude of the differences was surprising given that both scouts and non-scouts are foragers,” Robinson said.

Among the many differentially expressed genes were several related to catecholamine, glutamate and gamma-aminobutyric acid (GABA) signaling, and the researchers zeroed in on these because they are involved in regulating novelty-seeking and responding to reward in vertebrates.

To test whether the changes in brain signaling caused the novelty-seeking, the researchers subjected groups of bees to treatments that would increase or inhibit these chemicals in the brain.

Two treatments (with glutamate and octopamine) increased scouting in bees that had not scouted before. Blocking dopamine signaling decreased scouting behavior, the researchers found.

“Our results say that novelty-seeking in humans and other vertebrates has parallels in an insect,” Robinson said. “One can see the same sort of consistent behavioral differences and molecular underpinnings.”

The findings also suggest that insects, humans and other animals made use of the same genetic “toolkit” in the evolution of behavior, Robinson said. The tools in the toolkit – genes encoding certain molecular pathways – may play a role in the same types of behaviors, but each species has adapted them in its own, distinctive way.

“It looks like the same molecular pathways have been engaged repeatedly in evolution to give rise to individual differences in novelty-seeking,” he said.

The National Science Foundation, National Institutes of Health and Illinois Sociogenomics Initiative supported this research.

Collaborators on this study included researchers from Wellesley College and Cornell University.