Combine the tree-ring growth record with historical information, climate records and computer-model projections of future climate trends, and you get a grim picture for the future of trees in the southwestern United States.

That's the word from a team of scientists from Los Alamos National Laboratory, the U.S. Geological Survey, the University of Arizona and other partner organizations.

If the Southwest is warmer and drier in the near future, widespread tree death is likely and would cause substantial changes in the distribution of forests and of species, the researchers report in the journal Nature Climate Change.

Southwestern forests grow best when total winter precipitation is high combined with a summer and fall that aren't too hot and dry.

The team developed a Forest Drought-Stress Index that combines the amount of winter precipitation, late summer and fall temperatures, and late summer and fall precipitation into one number.

"The new 'Forest Drought-Stress Index' that Williams devised from seasonal precipitation and temperature-related variables matches the records of changing forest conditions in the Southwest remarkably well," said co-author Thomas W. Swetnam, director of the UA Laboratory of Tree-Ring Research.

"Among all climate variables affecting trees and forests that have ever been studied, this new drought index has the strongest correlation with combined tree growth, tree death from drought and insects and area burned by forest fires that I have ever seen."

A. Park Williams of Los Alamos National Laboratory in New Mexico is the lead author of the paper, "Temperature as a potent driver of regional forest drought stress and tree mortality." Six of the paper's 15 authors are at the UA. A complete list of authors is at the bottom of this release.

To figure out which climate variables affect forests, the researchers aligned some 13,000 tree core samples with known temperature and moisture data. The team also blended in events known from tree-ring, archaeological and other paleorecords, such as the late 1200s megadrought that drove the ancient Pueblo Indians out of longtime settlements such as those at Mesa Verde, Colo.

By comparing the tree-ring record to climate data collected in the Southwest since the late 1800s, the scientists identified two climate variables that estimate annual southwestern tree-growth variability with exceptional accuracy: total winter precipitation and average summer-fall atmospheric evaporative demand, a measure of the overall dryness of the environment.

Williams said, "Atmospheric evaporative demand is primarily driven by temperature. When air is warmer, it can hold more water vapor, thus increasing the pace at which soil and plants dry out. The air literally sucks the moisture out of the soil and plants."

Finding that summer-fall atmospheric evaporative demand is just as important as winter precipitation has critical implications for the future of southwestern forests, he said.

These trends, the researchers noted, are already occurring in the Southwest, where temperatures generally have been increasing for the past century and are expected to continue to do so because of accumulating greenhouse gases in the atmosphere.

There still will be wet winters, but increased frequency of warmer summers will put more stress on trees and limit their growth after wet winters, the study reports.

"We can use the past to learn about the future," Williams said. "For example, satellite fire data from the past 30 years show that there has been a strong and exponential relationship between the regional tree-ring drought-stress record and the area of southwestern forests killed by wildfire each year. This suggests that if drought intensifies, we can expect forests not only to grow more slowly, but also to die more quickly."