"There are unique and steady microbial communities for each of these components," says Grubbs. "This suggests we need to shift the way we think about hives. Instead of looking at the hive's microbial community as a whole, we need to look at the different communities associated with hive components. This will create a much more accurate picture of what's going on."

By establishing what's normal, scientists can now begin to look at if and how microbial communities shift when hives are under stress from disease or other causes. This information could have valuable, real-world applications.

"One of the big worries is how to develop more effective and environmentally-friendly methods of treating hives that are sick," says Grubbs. "But even before that, we need to find inexpensive and quick ways to identify hives that are sick or becoming sick. We could potentially do that by looking for changes in their microbial communities."

In addition to helping identify hives that are sick, these microbial communities could also potentially help cure them. A large share of the bacteria in hives are actinomycetes, a type that is the source of most our current medicinal compounds. As he studies actinobacteria in hive components, Grubbs, working in collaboration with Harvard's Clardy lab, has come across leads on a number of promising, previously unknown antibiotic-like compounds. One of them, it appears, could help bolster honeybee health and perhaps protect hives from colony collapse.

"We isolated an actinobacteria that is producing a novel antibiotic-like compound that appears to specifically inhibit the growth of a common hive parasite," says Grubbs. "If bees are already using actinobacteria to produce antibiotics to help protect the hive, then its plausible that we could use these same antibiotics to treat diseased hives."