Ramping it up to commercial scale will require thousands of acres and hundreds of millions of dollars, said Greene.

Which is where Lei can help. Turning a biofuel byproduct into a value-added product could be the key to commercial viability and may spawn other new industries. The global animal feed market is expected to exceed 1.5 billion tons per year by 2020, 15 percent of which (220 million tons) is protein, Lei said.

Not the seaweed found along coastlines or in sushi, Lei's algae is a dried version of their single-cell cousin. Its simpler structure means it is easier to break down, without the complex cellulose that presents challenges to the production of plant-based biofuels like corn-derived ethanol.

It also has a high lipid, or oil, content -- around 30 percent, compared with 4 percent in corn -- and its own inherent stress response can be harnessed to help in oil production. When starved of nutrients, the algae undergoes physiological changes causing it to exude oil -- a process being studied by Beth Ahner, professor of biological and environmental engineering, and Ruth Richardson, associate professor of civil and environmental engineering.

With further innovations, the process could actually remove substantial amounts of carbon dioxide from the atmosphere, Greene said, and its use in the production of jet fuel could help the U.S. military meet its goal of switching to a 50/50 blend of fossil and biofuels by 2020.