In 40 years, there will be an estimated 2 billion more mouths to feed. With the increasing pressure to find ways to produce more food, agricultural leaders around the globe have been discussing political, market and agronomic bottlenecks.

In late January, the world’s future food supply was front-and-center at the World Economic Forum in Davos, Switzerland. “I am here because the world’s leaders are deeply worried about our ability as farmers to feed a growing world population and they want to hear farmers’ voices to find solutions,” said Robert Carlson, National Farmers Union vice president for international affairs.

“The good news is that agriculture has never received such prominent attention since the end of World War II. But there are some real challenges for us, too. Water supplies for irrigation are being drawn down faster than they are being recharged and the demands for using fertilizer and pesticides more efficiently and sparingly are real. On top of that, we face the uncertain effects of climate change. We know it is happening, but we don’t really know how it will affect our individual farm production. The bottom line is that we are being asked to produce more with less.”

Also atop the list of concerns is research funding priorities. With shrinking funds cutting into agricultural research, well-respected, public sector scientists say biotechnology proponents often overpromise what new traits are capable of providing in terms of yield. They also contend that legislators holding the purse strings are too easily swayed by the allure of GM traits and the ability of biotechnology to actually provide ample food for those extra 2 billion bellies.

That doesn’t mean, however, that they dismiss biotechnology out of hand.

“We need biotechnology,” says Ken Cassman, professor of agronomy at the University of Nebraska.We need seed companies making large investments using all possible tools including conventional breeding, transgenic crops and marker assistance selection.

“I have no problem with seed companies being excited about what they do and to continue to invest in crop improvement through any means possible.”

What many fellow researchers take issue with, says Cassman, “are the claims about what’s possible in the near future — say, the next 10 to 20 years. That’s the critical period, really, because food prices are rising so fast.

“What’s really feasible in the next 10 to 20 years? What can really be delivered? That’s where many of us take issue with what we consider unreasonable claims about what’s in the pipeline.”

So, where should research dollars be allocated? Should the focus be on GM crops or conventional agriculture?

“I hope it isn’t an either/or,” says crop physiologist Thomas Sinclair, North Carolina State University professor. “We need both. However, the reality is we have lots of information now about how to increase crop yields that isn’t being put in place. There are a lot of reasons why that hasn’t happened. I think investing in disseminating some of the knowledge we already have would be worth it. In developing countries, we need to exploit what we already know.

“At the same time, I’ve heard people say, ‘The only future is the biotech approach.’ I believe that is very much an oversell. Biotech can certainly contribute to disease and insect issues. However, it’s worth remembering that conventional breeding can, as well. In fact, barring the Bt gene, most progress has been in the conventional realm.”